वृत्त ${x^2} + {y^2} = {a^2}$ के किस बिन्दु पर $y = x + a\sqrt 2 $ वृत्त की स्पर्श रेखा है
$\left( {\frac{a}{{\sqrt 2 }},\frac{a}{{\sqrt 2 }}} \right)$
$\left( { - \frac{a}{{\sqrt 2 }}, - \frac{a}{{\sqrt 2 }}} \right)$
$\left( {\frac{a}{{\sqrt 2 }}, - \frac{a}{{\sqrt 2 }}} \right)$
$\left( { - \frac{a}{{\sqrt 2 }},\frac{a}{{\sqrt 2 }}} \right)$
माना वत्त $x ^{2}+ y ^{2}-2 x +4 y +1=0$ का केन्द्र $B$ है। माना वत्त के दो बिंदुओ $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $A (3,1)$ है। तो $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ बराबर है ........ |
बिन्दु $(4, 3)$ से वृत्त ${x^2} + {y^2} = 9$ पर स्पर्श रेखाएँ खींची गयी हैं। इन स्पर्श रेखाओं और इनके स्पर्श बिन्दुओं को मिलाने वाली रेखा से बने त्रिभुज का क्षेत्रफल है
वृत्त ${x^2} + {y^2} = {a^2}$ की स्पर्श रेखा का समीकरण, जो $y = mx + c$ के समान्तर हो, है
वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं
वृत्त $x ^{2}+ y ^{2}=4$ के बिंदु $(\sqrt{3}, 1)$ पर खींची गई स्पर्श रेखा और अभिलंब तथा $x$-अक्ष एक त्रिभुज बनाते हैं। इस त्रिभुज का (वर्ग इकाईयों में) क्षेत्रफल है