वृत्त $x ^{2}+ y ^{2}=4$ के बिंदु $(\sqrt{3}, 1)$ पर खींची गई स्पर्श रेखा और अभिलंब तथा $x$-अक्ष एक त्रिभुज बनाते हैं। इस त्रिभुज का (वर्ग इकाईयों में) क्षेत्रफल है 

  • [JEE MAIN 2019]
  • A

    $\frac{1}{{\sqrt 3 }}$

  • B

    $\frac{4}{{\sqrt 3 }}$

  • C

    $\frac{1}{3}$

  • D

    $\frac{2}{{\sqrt 3 }}$

Similar Questions

यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा

  • [JEE MAIN 2019]

यदि बिन्दु $O (0,0)$ तथा $P (1+\sqrt{5}, 2)$ पर वृत्त $x^2+y^2-2 x-4 y=0$ की खीची गई स्पर्श रेखाये है, जो बिन्दु $Q$ पर मिलती हो, तब त्रिभुज $OPQ$ का क्षेत्रफल होगा -

  • [JEE MAIN 2022]

रेखा $ax + by + c = 0$ वृत्त ${x^2} + {y^2} = {r^2}$ पर अभिलम्ब है। रेखा $ax + by + c = 0$ द्वारा वृत्त पर काटे गये अन्त:खण्ड की लम्बाई है

एक रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} = {a^2}$ के बिन्दु $P$ व $Q$ पर मिलती है। बिन्दु $P$ व $Q$ पर स्पर्श रेखायें खींची जाती हैं जो $R$ पर मिलती हैं, तो $R$ के निर्देशांक हैं

यदि रेखा $y = mx + c$ वृत्त ${x^2} + {y^2} - 2x - 4y + 3 = 0$ को बिन्दु $(2, 3)$ पर स्पर्श करती हो, तो $c =$