दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के केन्द्र से इसकी किसी स्पर्श रेखा पर डाले गये लम्ब के पाद का बिन्दुपथ है
${({x^2} + {y^2})^2} = {b^2}{x^2} + {a^2}{y^2}$
${({x^2} + {y^2})^2} = {b^2}{x^2} - {a^2}{y^2}$
${({x^2} + {y^2})^2} = {a^2}{x^2} - {b^2}{y^2}$
${({x^2} + {y^2})^2} = {a^2}{x^2} + {b^2}{y^2}$
बिंदु $(1,3)$ से दीर्घवृत्त $2 x^2+3 y^2=5$ पर डाली गई दो स्पर्श रेखाओं के बीच न्यून कोण है :
शांकव $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$ के किसी बिन्दु पर नाभीय दूरी का योग है
दीर्घवृत्त $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ की उत्केन्द्रता है
किसी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए, यदि अतिपरवलय $x^{2}-y^{2} \sec ^{2} \theta=$ 10 को उत्केन्द्रता, दीर्घवृत्त, $x ^{2} \sec ^{2} \theta+ y ^{2}=5$ की उत्केन्द्रता का $\sqrt{5}$ गुणा है, तो दीर्घवृत्त की नाभिलम्ब जीवा की लम्बाई बराबर है -
माना $E$ एक दीर्घवत्त है जिसके अक्ष, निर्देशांक अक्षों के समांतर हैं। इसका केन्द्र $(3,-4)$ पर, एक नाभि $(4,-4)$ पर तथा एक शीर्ष $(5,-4)$ पर हैं। यदि $mx - y =4, m >0$ दीर्घवत्त $E$ की एक स्पर्श रेखा है, तो $5 m ^{2}$ का मान बराबर है ......... |