Match List$-I$ with List$-II.$
List$-I$ | List$-II$ |
$(a)$ Capacitance, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ Permittivity of free space, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ Permeability of free space, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ Electric field, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |
Choose the correct answer from the options given below
$(a) \rightarrow(i i i),(b) \rightarrow(i i),(c) \rightarrow(i v),(d) \rightarrow(i)$
$(a) \rightarrow(i i i),(b) \rightarrow(i v),(c) \rightarrow(i i),(d) \rightarrow(i)$
$(a) \rightarrow(iv),(b) \rightarrow(i i),(c) \rightarrow(iii),(d) \rightarrow(i)$
$(a) \rightarrow(iv),(b) \rightarrow(iii),(c) \rightarrow(ii),(d) \rightarrow(i)$
The $SI$ unit of energy is $J=k g\, m^{2} \,s^{-2} ;$ that of speed $v$ is $m s^{-1}$ and of acceleration $a$ is $m s ^{-2} .$ Which of the formulae for kinetic energy $(K)$ given below can you rule out on the basis of dimensional arguments ( $m$ stands for the mass of the body ):
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m v^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$
The dimensions of impulse are equal to that of
The dimensions of universal gravitational constant are
If $C$ and $L$ denote capacitance and inductance respectively, then the dimensions of $LC$ are
In a typical combustion engine the work done by a gas molecule is given $W =\alpha^{2} \beta e ^{\frac{-\beta x ^{2}}{ KT }}$, where $x$ is the displacement, $k$ is the Boltzmann constant and $T$ is the temperature. If $\alpha$ and $\beta$ are constants, dimensions of $\alpha$ will be