લિસ્ટ $-I$ | લિસ્ટ $-II$ |
$(a)$ કેપેસીટન્સ, $C$ | $(i)$ ${M}^{1} {L}^{1} {T}^{-3} {A}^{-1}$ |
$(b)$ શૂન્યાવકાશની પરમિટિવિટી, $\varepsilon_{0}$ | $(ii)$ ${M}^{-1} {L}^{-3} {T}^{4} {A}^{2}$ |
$(c)$ શૂન્યાવકાશની પરમીએબીલીટી, $\mu_{0}$ | $(iii)$ ${M}^{-1} L^{-2} T^{4} A^{2}$ |
$(d)$ વિદ્યુતક્ષેત્ર, $E$ | $(iv)$ ${M}^{1} {L}^{1} {T}^{-2} {A}^{-2}$ |
સરળ આવર્તગતિ કરતા પદાર્થનો આવર્તકાળ $ T = {P^a}{D^b}{S^c} $ .જયાં $P$ દબાણ,$D$ ઘનતા અને $S$ પૃષ્ઠતાણ હોય,તો $a,b$ અને $c$ ના મૂલ્યો કેટલા હોવા જોઈએ?
ઊર્જાનો $SI$ એકમ $J=k g\; m^{2} \,s^{-2}$ અને તે જ રીતે, વેગ $v$ માટે $m s^{-1}$ અને પ્રવેગ $a$ માટે $m s ^{-2}$ છે. નીચે આપેલ સુત્રો પૈકી કયાં સૂત્રો પારિમાણિક દૃષ્ટિએ ગતિઊર્જા $(K)$ માટે તમે ખોટાં ઠેરવશો ? ( $m$ પદાર્થનું દળ સૂચવે છે.)
$(a)$ $K=m^{2} v^{3}$
$(b)$ $K=(1 / 2) m v^{2}$
$(c)$ $K=m a$
$(d)$ $K=(3 / 16) m v^{2}$
$(e)$ $K=(1 / 2) m v^{2}+m a$
એક કણની સ્થિતિ ઊર્જા $U=\frac{A \sqrt{x}}{x^2+B}$, ઉદગમબિંદુુથી $x$ અંતરે બદલાય છે , જ્યાં $A$ અને B પારિમાણિક અચળાંકો છે, તો $A B$ નું પારિમાણિક સૂત્ર શું થાય?
એકમોની નવી પદ્ધતિમાં ઊર્જા $(E)$, ઘનતા $(d)$ અને પાવર $(P)$ ને મૂળભૂત એકમો તરીક લેવામાં આવે છે, તો પછી સાર્વત્રિક ગુરુત્વાકર્ષણ અચળાંક $G$ નું પારિમાણિક સૂત્ર શું હશે?