જો ગણ $A = \{1, 2, 3, 4\}$ પરના સામ્ય સંબંધોની મહત્તમ સંખ્યાઓ $N$ હોય તો ...

  • A

    $14 \leq N \leq 20$

  • B

    $21 \leq N \leq 28$

  • C

    $29 \leq N \leq 36$

  • D

    $N \geq 37$

Similar Questions

સંબંધ $R$ એ ગણ $A=\{1,2,3,4,5,6,7\}$ પર $R =\{(a, b):$ $a$ અને $b$ બંને અયુગ્મ અથવા બંને યુગ્મ $\} $ દ્વારા વ્યાખ્યાયિત છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે. એ સાથે જ સાબિત કરો કે $ \{1,3,5,7\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે અને $\{2,4,6\}$ ના બધા જ ઘટકો $R$ દ્વારા એકબીજા સાથે સંબંધિત છે, પરંતુ $\{1,3,5,7\}$ નો કોઈ પણ ઘટક ઉપગણ $\{2,4,6\}$ ના કોઈ પણ ઘટક સાથે $R$ દ્વારા સંબંધિત નથી.

સાબિત કરો કે ગણ $\{1,2,3\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(1,2),(2,1)\}$ સંમિત છે પરંતુ સ્વવાચક કે પરંપરિત સંબંધ નથી. 

પ્રત્યેક $a, b \in R$ માટે $a R_1 b \Leftrightarrow a^2+b^2=1$ અને પ્રત્યેક $(a, b),(c, d) \in N \times N$ માટે $(a, b) R_2(c, d) \Leftrightarrow a+d=b+c$ વડે વ્યાખ્યાયિત સંબંધો $R_1$ અને $R_2$ ધ્યાને લો. તો__________. 

  • [JEE MAIN 2024]

જો સંબંધ $R$ એ ગણ $N$ પર “$nRm \Leftrightarrow n$ એ $m$ નો અવયવ છે.(i.e., $n|m$)” દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . .  .

ધારો કે છોકરાઓની એક શાળાના બધા જ વિદ્યાર્થીઓનો ગણ $\mathrm{A}$ છે. સાબિત કરો કે ગણ $A$ પરનો સંબંધ $\mathrm{R} =\{(a, b): \mathrm{a} $ એ $\mathrm{b}$ ની બહેન છે $\}$રિક્ત સંબંધ છે અને $\mathrm{R} ^{\prime}=\{(a, b)$ $: \mathrm{a}$ અને $\mathrm{b}$ વચ્ચેની ઊંચાઈનો તફાવત $3$ મીટર કરતાં ઓછો છે. $\}$ એ સાર્વત્રિક ગણ છે.