Negation of $p \wedge (\sim q \vee \sim r)$ is -

  • A

    $(p \vee q) \wedge (\sim p \vee r)$

  • B

    $(\sim p \vee q) \wedge (\sim p \vee r)$

  • C

    $(p \wedge q) \vee (p \vee r)$

  • D

    $(\sim p \vee q) \vee (\sim p \vee r)$

Similar Questions

For the statements $p$ and $q$, consider the following compound statements :

$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$

$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$

Then which of the following statements is correct?

  • [JEE MAIN 2021]

The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to

  • [JEE MAIN 2019]

If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of  $p$ and  $q$ are respectively .

  • [JEE MAIN 2018]

$(p\; \wedge \sim q) \wedge (\sim p \wedge q)$ is

The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a