Negation of $p \wedge (\sim q \vee \sim r)$ is -
$(p \vee q) \wedge (\sim p \vee r)$
$(\sim p \vee q) \wedge (\sim p \vee r)$
$(p \wedge q) \vee (p \vee r)$
$(\sim p \vee q) \vee (\sim p \vee r)$
For the statements $p$ and $q$, consider the following compound statements :
$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$
$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$
Then which of the following statements is correct?
The expression $ \sim ( \sim p\, \to \,q)$ is logically equivalent to
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .
$(p\; \wedge \sim q) \wedge (\sim p \wedge q)$ is
The propositions $(p \Rightarrow \;\sim p) \wedge (\sim p \Rightarrow p)$ is a