When does the current flow through the following circuit
$p, q, r$ should be closed
$p, q, r$ should be open
Always
None of these
Among the statements:
$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$
$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$
The logical statement $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ is equivalent to
If the inverse of the conditional statement $p \to \left( { \sim q\ \wedge \sim r} \right)$ is false, then the respective truth values of the statements $p, q$ and $r$ is
$\sim (p \vee q)$ is equal to
The contrapositive of the statement "If you will work, you will earn money" is ..... .