Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
$\mathrm{p} \wedge \sim \mathrm{q} \wedge \sim \mathrm{r}$
$\sim \mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}$
$\sim \mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$
$\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$
If $(p\; \wedge \sim r) \Rightarrow (q \vee r)$ is false and $q$ and $r$ are both false, then $p$ is
Which of the following Boolean expressions is not a tautology ?
Statement $p$ $\rightarrow$ ~$q$ is false, if
The statment $ \sim \left( {p \leftrightarrow \sim q} \right)$ is
If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to