Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :

  • [JEE MAIN 2021]
  • A

    $\mathrm{p} \wedge \sim \mathrm{q} \wedge \sim \mathrm{r}$

  • B

    $\sim \mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}$

  • C

    $\sim \mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$

  • D

    $\mathrm{p} \wedge \mathrm{q} \wedge \mathrm{r}$

Similar Questions

If $(p\; \wedge \sim r) \Rightarrow (q \vee r)$ is false and $q$ and $r$ are both false, then $p$ is

Which of the following Boolean expressions is not a tautology ?

  • [JEE MAIN 2021]

Statement $p$ $\rightarrow$  ~$q$ is false, if

The statment $ \sim \left( {p \leftrightarrow  \sim q} \right)$ is

If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to

  • [JEE MAIN 2021]