Mathematical Reasoning
hard

The negation of the statement $(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$ is

A

equivalent to $\sim A$

B

equivalent to $\sim C$

C

equivalent to $B \vee \sim C$

D

a fallacy

(JEE MAIN-2023)

Solution

$p :(( A \wedge( B \vee C )) \Rightarrow( A \vee B )) \Rightarrow A$

${[\sim( A \wedge( B \vee C )) \vee( A \vee B )] \Rightarrow A }$

${[( A \wedge( B \vee C )) \wedge \sim( A \vee B )] \vee A }$

$( f \vee A )= A$

$\sim p \equiv \sim A$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.