Number of common tangents of the ellipse  $\frac{{{{\left( {x - 2} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1$ and the circle $x^2 + y^2 -4x + 2y + 4 = 0$ is 

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    more than $2$

Similar Questions

An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is

  • [KVPY 2021]

Let $P$ be a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with foci ${F_1}$ and ${F_2}$. If $A$ is the area of the triangle $P{F_1}{F_2}$, then maximum value of $A$ is

  • [IIT 1994]

If the normal at any point $P$ on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ meets the co-ordinate axes in $G$ and $g$ respectively, then $PG:Pg = $

The eccentricity of an ellipse is $2/3$, latus rectum is $5$ and centre is $(0, 0)$. The equation of the ellipse is

A ray of light through $(2,1)$ is reflected at a point $P$ on the $y$ - axis and then passes through the point $(5,3)$. If this reflected ray is the directrix of an ellipse with eccentrieity $\frac{1}{3}$ and the distance of the nearer focus from this directrix is $\frac{8}{\sqrt{53}}$, then the equation of the other directrix can be :

  • [JEE MAIN 2021]