Let $E$ be the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ and $C$ be the circle ${x^2} + {y^2} = 9$. Let $P$ and $Q$ be the points $(1, 2)$ and $(2, 1)$ respectively. Then
$Q$ lies inside $C$ but outside $E$
$Q$ lies outside both $C$ and $E$
$P$ lies inside both $C$ and $E$
$P$ lies inside $C$ but outside $E$
If the chord through the point whose eccentric angles are $\theta \,\& \,\phi $ on the ellipse,$(x^2/a^2) + (y^2/b^2) = 1$ passes through the focus, then the value of $ (1 + e)$ $\tan(\theta /2) \tan(\phi /2)$ is
Find the equation for the ellipse that satisfies the given conditions: Vertices $(0,\,\pm 13),$ foci $(0,\,±5)$.
Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1$ at $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ where $\theta \in (0,\;\pi /2)$. Then the value of $\theta $ such that sum of intercepts on axes made by this tangent is minimum, is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{100}+\frac{y^{2}}{400}=1$.
Find the equation of the ellipse, whose length of the major axis is $20$ and foci are $(0,\,\pm 5)$