Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$
$1$
$3$
$2$
$4$
If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\ sinA + 4\ cosA$
$\frac{{\cos 12^\circ - \sin 12^\circ }}{{\cos 12^\circ + \sin 12^\circ }} + \frac{{\sin 147^\circ }}{{\cos 147^\circ }} = $
The value of $\frac{{3 + \cot {{76}^o}\cot {{16}^o}}}{{\cot {{76}^o} + \cot {{16}^o}}}$
$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $
The expression $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ is equal to