The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is

  • A

    $-1$

  • B

    $1$

  • C

    $\frac{1}{{\sqrt 2 }}$

  • D

    $\frac{{\sqrt 3 }}{2}$

Similar Questions

If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$

$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $

  • [IIT 1984]

Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$