$cotx - cosx = 1 - cotx. cosx$ માટે $ x \in \left[ {0,2\pi } \right]$ ............ કિમતો મળે
$1$
$3$
$2$
$4$
સમીકરણ ${\sin ^2}\,2\theta + {\cos ^4}\,2\theta = \frac{3}{4}$ ના $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ ના બધા ઉકેલો નો સરવાળો .......... થાય.
$\left( {1 + \cos \frac{\pi }{9}} \right)\left( {1 + \cos \frac{{3\pi }}{9}} \right)\left( {1 + \cos \frac{{5\pi }}{9}} \right)\left( {1 + \cos \frac{{7\pi }}{9}} \right)$ની કિમત ............ થાય
જો $A + B + C = \frac{\pi }{2}$ થાય તો $tanA\,\, tanB + tanB\,\, tanC + tanC\,\, tanA$ =
જો $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ તો
જો $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ તો $\tan \,2A$ ની કિમત $p$ અને $q$ માં મેળવો.