સદિશોના કાર્તેઝિય ઘટકોના સ્વરૂપમાં અદિશ ગુણાકાર મેળવો.
$\vec{A}$ અને $\vec{B}$ ને કાર્તેઝિય ધટકોના સ્વરૂપમાં નીચે મુજબ લખાય.
$\overrightarrow{ A }= A _{x} \hat{i}+ A _{y} \hat{j}+ A _{z} \hat{k}$
$\overrightarrow{ B }= B _{x} \hat{i}+ B _{y} \hat{j}+ B _{z} \hat{k}$
$\therefore \quad \overrightarrow{ A } \cdot \overrightarrow{ B }=\left( A _{x} \hat{i}+ A _{y} \hat{j}+ A _{z} \hat{k}\right) \cdot\left( B _{x} \hat{i}+ B _{y} \hat{j}+ B _{z} \hat{k}\right)$
$= A _{x} B _{x}(\hat{i} \cdot \hat{i})+ A _{x} B _{y}(\hat{i} \cdot \hat{j})+ A _{x} B _{z}(\hat{i} \cdot \hat{k})$$+ A _{y} B _{x}(\hat{j} \cdot \hat{i})+ A _{y} B _{y}(\hat{j} \cdot \hat{j})+ A _{y} B _{z}(\hat{j} \cdot \hat{k})+ A _{z} B _{x}(\hat{k} \cdot \hat{i})+ A _{z} B _{y}(\hat{k} \cdot \hat{j})+ A _{z} B _{z}(\hat{k} \cdot \hat{k})$
આ સમીકરણમાં $\hat{i} \cdot \hat{i}=\hat{j} \cdot \hat{j}=\hat{k} \cdot \hat{k}=1$ અને
$\hat{i} \cdot \hat{j}=\hat{j} \cdot \hat{i}=0, \hat{j} \cdot \hat{k}=\hat{k} \cdot \hat{j}=0$
$\hat{k} \cdot \hat{i}=\hat{i} \cdot \hat{k}=0$ મૂક્તા,
$\therefore \quad \overrightarrow{ A } \cdot \overrightarrow{ B }= A _{x} B _{x}+ A _{y} B _{y}+ A _{z} B _{z}$ મળે.
બે સદિશોના સદિશ ગુણાકારના ગુણધર્મો લખો અને સમજાવો.
જો $\mathop {\,{\rm{A}}}\limits^ \to \,\, \times \;\,\mathop {\rm{B}}\limits^ \to \,\, = \,\,\mathop {\,{\rm{B}}}\limits^ \to \,\, \times \;\,\mathop {\rm{C}}\limits^ \to \,\, = \,\,\mathop {\,{\rm{C}}}\limits^ \to \,\, \times \;\,\mathop {\rm{A}}\limits^ \to $ હોય , તો $\mathop {\,{\rm{A}}}\limits^ \to \,\, + \;\,\mathop {\rm{B}}\limits^ \to \,\, + \;\,\mathop {\,C}\limits^ \to $ બરાબર . . . . .
બતાવો કે બે સદિશોનો અદિશ ગુણાકાર ક્રમનો નિયમ પાળે છે.