- Home
- Standard 11
- Mathematics
एक समकोणीय अतिपरवलय $(rectangular\,hyperbola)$ $x^2-y^2=a^2, a>0$, पर तीन बिन्दुएँ $A, B, C$ इस प्रकार ली गई हैं कि $A=(-a, 0) ; B$ एवं $C$ को $x$-अक्ष के सापेक्ष सममितिय $(symmetrically)$ तरीके से उस अतिपरवलय की ऐसी शाखा पर रखा जाता है जिसपर $A$ नहीं है। मान लीजिए कि त्रिभुज $A B C$ समबाहु है। यदि त्रिभुज $A B C$ की भुजा की लंबाई $k a$ है, तब $k$ निम्न अंतराल में होगा:
$(0,2]$
$(2,4]$
$(4,6]$
$(6,8]$
Solution

(b)
We have rectangular hyperbola
$x^2-y^2=a^2$
Given $A B C$ is an equilateral triangle.
$A B =B C=A C$
$A B^2 =B C^2$
$a^2(\sec \theta+1)^2+a^2 \tan ^2 \theta=4 a^2 \tan ^2 \theta$
$\begin{aligned}(\sec \theta+1)^2 &=3 \tan ^2 \theta \\(\sec \theta+1)^2 &=3\left(\sec ^2 \theta-1\right) \\(\sec \theta+1)^2 &=3(\sec \theta+1)(\sec \theta-1) \end{aligned}$
$\sec \theta+1=3 \sec \theta-3$
$\sec \theta=2$
$\theta=60^{\circ}$
$\because$ Side $B C=2 a \tan \theta$
$=2 a \tan 6 \theta^{\circ}=2 a \sqrt{3}$
But side of triangle is $k a$.
$k a =2 a \sqrt{3}$
$k =2 \sqrt{3}$
Hence, $k \in(2,4]$.