Gujarati
10-2. Parabola, Ellipse, Hyperbola
normal

एक समकोणीय अतिपरवलय $(rectangular\,hyperbola)$ $x^2-y^2=a^2, a>0$, पर तीन बिन्दुएँ $A, B, C$ इस प्रकार ली गई हैं कि $A=(-a, 0) ; B$ एवं $C$ को $x$-अक्ष के सापेक्ष सममितिय $(symmetrically)$ तरीके से उस अतिपरवलय की ऐसी शाखा पर रखा जाता है जिसपर $A$ नहीं है। मान लीजिए कि त्रिभुज $A B C$ समबाहु है। यदि त्रिभुज $A B C$ की भुजा की लंबाई $k a$ है, तब $k$ निम्न अंतराल में होगा:

A

$(0,2]$

B

$(2,4]$

C

$(4,6]$

D

$(6,8]$

(KVPY-2018)

Solution

(b)

We have rectangular hyperbola

$x^2-y^2=a^2$

Given $A B C$ is an equilateral triangle.

$A B =B C=A C$

$A B^2 =B C^2$

$a^2(\sec \theta+1)^2+a^2 \tan ^2 \theta=4 a^2 \tan ^2 \theta$

$\begin{aligned}(\sec \theta+1)^2 &=3 \tan ^2 \theta \\(\sec \theta+1)^2 &=3\left(\sec ^2 \theta-1\right) \\(\sec \theta+1)^2 &=3(\sec \theta+1)(\sec \theta-1) \end{aligned}$

$\sec \theta+1=3 \sec \theta-3$

$\sec \theta=2$

$\theta=60^{\circ}$

$\because$ Side $B C=2 a \tan \theta$

$=2 a \tan 6 \theta^{\circ}=2 a \sqrt{3}$

But side of triangle is $k a$.

$k a =2 a \sqrt{3}$

$k =2 \sqrt{3}$

Hence, $k \in(2,4]$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.