अतिपरवलय $16{x^2} - {y^2} + 64x + 4y + 44 = 0$ के अनुप्रस्थ अक्ष तथा संयुग्मी अक्ष के समीकरण हैं
$x = 2,\;y + 2 = 0$
$x = 2,\;y = 2$
$y = 2,\;x + 2 = 0$
इनमें से कोई नहीं
निम्न में कौन अतिपरवलय निर्दिष्ट नहीं करता है
माना बिंदु $\mathrm{P}(4,1)$ से अतिपरवलय $\mathrm{H}: \frac{\mathrm{y}^2}{25}-\frac{\mathrm{x}^2}{16}=1$ पर खींची गई स्पर्श रेखाओं की प्रवणताएं $\mathrm{m}_1$ तथा $\mathrm{m}_2$ हैं। यदि $\mathrm{Q}$ वह बिंदु है, जिससे $\mathrm{H}$ पर खींची गई स्पर्श रेखाओं की प्रवणताएं $\left|m_1\right|$ तथा $\left|m_2\right|$ हैं तथा यह स्पर्श रेखाएं $x$-अक्ष पर धनात्मक अंतःखंड $\alpha$ तथा $\beta$ बनाती है, तो $\frac{(\mathrm{PQ})^2}{\alpha \beta}$ बराबर है_________
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(0,\pm 3),$ नाभियाँ $(0,±5)$
आयताकार अतिपरवलय $\int_0^1 {{e^x}\left( {\frac{1}{x} - \frac{1}{{{x^3}}}} \right)} \;dx$ की उत्केन्द्रता है
एक अतिपरवलय जिसके अनुप्रस्थ (transverse) अक्ष की लम्बाई $\sqrt{2}$ है और उसके नाभिकेन्द्र, दीर्घवृत्त $3 x^{2}+4 y^{2}=12$ के नाभिकेन्द्रों के बराबर है। तो अतिपरवलय निम्न में से किस बिन्दु से होकर नहीं जाता है?