अतिपरवलय $4{y^2} = {x^2} - 1$ के बिन्दु $(1, 0)$ पर स्पर्श रेखा का समीकरण होगा
$x = 1$
$y = 1$
$y = 4$
$x = 4$
सरल रेखा $y = mx + c$ वक्र $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ को स्पर्श करती है, यदि
उस अतिपरवलय, जिसकी नाभि दीर्घवृत्त $\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1$ की नाभि के बराबर है, तथा उत्केन्द्रता $2$ है का समीकरण होगा
माना $a$ तथा $b$ क्रमशः, एक अतिपरवलय जिसकी उत्केंद्रता समीकरण $9 e^{2}-18 e+5=0$ को संतुष्ट करती है, के अर्धअनुप्रस्थ अक्ष तथा अर्धसंयुग्मी अक्ष हैं। यदि $S(5,0)$ इस अतिपरवलय की एक नाभि तथा $5 x=9$ संगत नियन्ता (directrix) है, तो $a^{2}-b^{2}$ बराबर है
एक अतिपरवलय की नाभियाँ $( \pm 2,0)$ हैं तथा इसकी उत्केन्द्रता $\frac{3}{2}$ है। प्रथम चतुर्थांश में अतिपरवलय के एक बिंदु पर एक स्पर्श रेखा, जो $2 x+3 y=6$ के लंबवत है, खींची जाती है। यदि यह स्पर्श रेखा, $x$ - तथा $y$-अक्षों पर क्रमशः अंतःखंड $a$ तथा $b$ बनाती है, तो $|6 \mathrm{a}|+|5 \mathrm{~b}|$ बराबर है_______.
यदि रेखा $y = mx + c$ अतिपरवलय $\frac{ x ^{2}}{100}-\frac{ y ^{2}}{64}=1$ तथा वृत्त $x ^{2}+ y ^{2}=36$ की एक उभयनिष्ठ स्पर्श रेखा है, तो निम्न में से कौनसा एक सही है ?