दो बल ${F_1} = 1\,N$ तथा ${F_2} = 2\,N$ क्रमश: $x = 0$ तथा $y = 0$ रेखाओं के अनुदिश कार्यरत हैं तो बलों का परिणामी होगा

  • A

    $\hat i + 2\hat j$

  • B

    $\hat i + \hat j$

  • C

    $3\hat i + 2\hat j$

  • D

    $2\hat i + \hat j$

Similar Questions

दो बल इस प्रकार हैं कि इनके योग का परिमाण $18\, N$ एवं इनका परिणामी (जिसका परिमाण $12\, N$ है) कम परिमाण के बल पर लम्बवत् है। तब बलों के परिमाण है

किसी बिन्दु पर कार्य करने वाले दो बलों के परिमाणों का योग $18$ है तथा उनके परिणामी का परिमाण $12$ है। यदि परिणामी छोटे परिमाण के बल से $90^°$ के कोण पर हो तो बलों के परिमाण होंगे

  • [AIEEE 2002]

दो सदिशों $\hat i - 2\hat j + 2\hat k$ तथा $2\hat i + \hat j - \hat k,$ में कौनसा सदिश जोडे़ं कि उनका परिणामी $X-$अक्ष के अनुदिश इकाई सदिश हो

$\vec{A}$ और $\vec{B}$ दो सदिश राशियाँ हैं, जहाँ $\vec{A}=a \hat{\imath}$ और $\vec{B}=a(\cos \omega t \hat{\imath}+\sin \omega t \hat{\jmath})$ हैं। यहाँ $a$ एक स्थिरांक (constant) है और $\omega=\pi / 6 rad s ^{-1}$ है। यदि $|\vec{A}+\vec{B}|=\sqrt{3}|\vec{A}-\vec{B}|$ प्रथम बार समय $t=\tau$ पर होता है, तो $\tau$ का मान, सेकेंडों (seconds) में, .......... है।

  • [IIT 2018]

माना दो अशून्य सदिशों $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण $120^°$ है तथा इनका परिणामी $\mathop C\limits^ \to $ है तो