3-1.Vectors
medium

એક ખુલ્લા મેદાનમાં એક કારચાલક એવો રસ્તો પકડે છે કે જે દરેક $500$ મીટર અંતર બાદ તેની ડાબી બાજુ $60^{°}$ ના ખૂણે વળાંક લે છે. એક વળાંકથી શરૂ કરી, કારચાલકના ત્રીજા, છઠ્ઠા તથા આઠમા વળાંક પાસે સ્થાનાંતર શોધો. આ દરેક સ્થિતિમાં કારચાલકની કુલ પથ લંબાઈની તેના સ્થાનાંતરના માન સાથે તુલના કરો.

Option A
Option B
Option C
Option D

Solution

The path followed by the motorist is a regular hexagon with side $500\, m$, as shown in the given figure

Let the motorist start from point $P$. The motorist takes the third turn at $S$.

$\therefore$ Magnitude of displacement $= PS = PV + VS =500+500=1000 \,m$

Total path length $= PQ + QR + RS =500+500+500=1500\, m$

The motorist takes the sixth turn at point $P$, which is the starting point.

$\therefore$ Magnitude of displacement $=0$ Total path length $= PQ + QR + RS + ST + TU + UP$

$=500+500+500+500+500+500=3000 \,m$

The motorist takes the eight turn at point $R$

$\therefore$ Magnitude of displacement $= PR$

$=\sqrt{ PQ ^{2}+ QR ^{2}+2( PQ ) \cdot( QR ) \cos 60^{\circ}}$

$=\sqrt{500^{2}+500^{2}+\left(2 \times 500 \times 500 \times \cos 60^{\circ}\right)}$

$=\sqrt{250000+250000+\left(500000 \times \frac{1}{2}\right)}$

$=866.03\, m$

$\beta=\tan ^{-1}\left(\frac{500 \sin 60^{\circ}}{500+500 \cos 60^{\circ}}\right)=30^{\circ}$

Therefore, the magnitude of displacement is $866.03\, m$ at an angle of $30^{\circ}$ with $PR$. Total path length $=$ Circumference of the hexagon $+ PQ + QR$ $=6 \times 500+500+500=4000\, m$

The magnitude of displacement and the total path length corresponding to the required turns is shown in the given table

Turn  Magnitude of displacement Total path length
Third  $1000 $ $1500 $
Sixth  $0 $ $3000 $
Eighth $866.03 ; 30^{\circ}$ $4000$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.