એક ખુલ્લા મેદાનમાં એક કારચાલક એવો રસ્તો પકડે છે કે જે દરેક $500$ મીટર અંતર બાદ તેની ડાબી બાજુ $60^{°}$ ના ખૂણે વળાંક લે છે. એક વળાંકથી શરૂ કરી, કારચાલકના ત્રીજા, છઠ્ઠા તથા આઠમા વળાંક પાસે સ્થાનાંતર શોધો. આ દરેક સ્થિતિમાં કારચાલકની કુલ પથ લંબાઈની તેના સ્થાનાંતરના માન સાથે તુલના કરો.
The path followed by the motorist is a regular hexagon with side $500\, m$, as shown in the given figure
Let the motorist start from point $P$. The motorist takes the third turn at $S$.
$\therefore$ Magnitude of displacement $= PS = PV + VS =500+500=1000 \,m$
Total path length $= PQ + QR + RS =500+500+500=1500\, m$
The motorist takes the sixth turn at point $P$, which is the starting point.
$\therefore$ Magnitude of displacement $=0$ Total path length $= PQ + QR + RS + ST + TU + UP$
$=500+500+500+500+500+500=3000 \,m$
The motorist takes the eight turn at point $R$
$\therefore$ Magnitude of displacement $= PR$
$=\sqrt{ PQ ^{2}+ QR ^{2}+2( PQ ) \cdot( QR ) \cos 60^{\circ}}$
$=\sqrt{500^{2}+500^{2}+\left(2 \times 500 \times 500 \times \cos 60^{\circ}\right)}$
$=\sqrt{250000+250000+\left(500000 \times \frac{1}{2}\right)}$
$=866.03\, m$
$\beta=\tan ^{-1}\left(\frac{500 \sin 60^{\circ}}{500+500 \cos 60^{\circ}}\right)=30^{\circ}$
Therefore, the magnitude of displacement is $866.03\, m$ at an angle of $30^{\circ}$ with $PR$. Total path length $=$ Circumference of the hexagon $+ PQ + QR$ $=6 \times 500+500+500=4000\, m$
The magnitude of displacement and the total path length corresponding to the required turns is shown in the given table
Turn | Magnitude of displacement | Total path length |
Third | $1000 $ | $1500 $ |
Sixth | $0 $ | $3000 $ |
Eighth | $866.03 ; 30^{\circ}$ | $4000$ |
જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
નીચેનામાંથી કઈ રાશિ/ રાશિઓ યામોક્ષોનાં અભિગમની પસંદગી પર આધાર રાખે છે?
$(a)$ $\vec{a}+\vec{b}$
$(b)$ $3 a_x+2 b_y$
$(c)$ $(\vec{a}+\vec{b}-\vec{c})$
$150^{\circ}$ ના ખૂણે રહેલા બે સદીશોનું પરિણામી મુલ્ય $10$ એકમ છે અને તે એક સદિશ સાથે લંબ રીતે ગોકવાયેલ છે. તો નાના સદિશનું માપન મુલ્ય ............. એકમ થાય ?
વિધાન $A$ : જો $A, B, C, D$ એ અર્ધ વર્તુળ કેન્દ્ર $O$ પર ચાર બિંદુઓ એવા છે કે જેથી $|\overrightarrow{{AB}}|=|\overrightarrow{{BC}}|=|\overrightarrow{{CD}}|$ હોય, તો $\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}=4 \overrightarrow{{AO}}+\overrightarrow{{OB}}+\overrightarrow{{OC}}$
કારણ $R$ : સદીશ સરવાળાનો બહુકોણનો નિયમ $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{A D}=2 \overrightarrow{A O}$ આપે છે.
ઉપરોક્ત વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો પૈકી સૌથી વધારે યોગ્ય જવાબ પસંદ કરો.
બે બળો $3\,N$ અને $2\,N$ વચ્ચેનો ખૂણો $\theta$ છે,અને તેનું પરિણામી $R$ છે.પ્રથમ બળ $6\,N$ કરવાથી પરિણામી બળ $2R$ થાય છે,તો $\theta =$ ....... $^o$