જો ઘટનાઓ $X$ અને $Y$ છે કે જેથી $P(X \cup Y=P)\,(X \cap Y).$

વિધાન $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$

વિધાન $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$

  • [AIEEE 2012]
  • A

    વિધાન $1$ એ અસત્ય છે અને વિધાન $2$ એ સત્ય છે.

  • B

    વિધાન $1$ એ સત્ય છે  અને વિધાન $2$ એ સત્ય છે અને $2$ એ $1$ ની સમજૂતી આપતું નથી.

  • C

    વિધાન $1$ એ સત્ય છે અને વિધાન $2$ એ અસત્ય છે.

  • D

    વિધાન $1$ એ સત્ય છે  અને વિધાન $2$ એ સત્ય છે અને $2$ એ $1$ ની સમજૂતી આપે છે .

Similar Questions

$A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના બનવાની સંભાવના $0.6$ છે. જો $A$ અને $B$ એક સાથે બનવાની સંભાવના $0.3$, હોય તો $P (A') + P (B') = ……$

નીચે આપેલા કોષ્ટકમાં ખાલી જગ્યા ભરો : 

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$\frac {1}{3}$ $\frac {1}{5}$ $\frac {1}{15}$  ........

ઘટનાઓ $A$ અને $B$ માટે $\mathrm{P}(\mathrm{A})=\frac{1}{2}, \mathrm{P}(\mathrm{B})=\frac{7}{12}$ અને  $P (A -$ નહી અથવા $B-$ નહી $) =$ $\frac {1}{4}$. $A$ અને $B$ નિરપેક્ષ છે કે નહિ ?

$53$ રવિવાર અને $53$ સોમવાર ધરાવતા વર્ષોમાથી કોઈપણ પસંદ કરતાં, તે લીપ વર્ષ બનવાની સંભાવના કેટલી?

જો $ P(A) = 0.25, P(B)= 0.50 $ અને  $P(A \,\cap\,B) = 0.14 $ હોય, તો $P(A\,\, \cap \,\,\overline B )$બરાબર શું થાય ?