$8.0 \times 10^{-3} \,kg m ^{-1}$ रैखिक द्रव्यमान घनत्व की किसी लंबी डोरी का एक सिरा $256\, Hz$ आवृत्ति के विध्यूत चालित स्वरित्र द्विभुज से जुड़ा है । डोरी का दूसरा सिरा किसी स्थिर घिरनी के ऊपर गुजरता हुआ किसी तुला के पलड़े से बँधा है जिस पर $90\, kg$ के बाट लटके हैं। घिरनी वाला सिरा सारी आवक कर्जा को अवशोषित कर लेता है जिसके कारण इस सिरे से परावर्तित तरंगों का आयाम नगण्य होता है । $t=0$ पर डोरी के बाएँ सिरे ( द्विभुज वाले सिरे) $x=0$ पर अनुप्रस्थ विस्थापन शून्य है ( $y=0$ ) तथा वह $y$ की धनात्मक दिशा के अनुदिश गतिशील है । तरंग का आयाम $5.0 \,cm$ है । डोरी पर इस तरंग का वर्णन करने वाले अनुप्रस्थ विस्थापन $y$ को $x$ तथा $t$ के फलन के रूप में लिखिए
The equation of a travelling wave propagating along the positive $y$ -direction is given by the
displacement equation: $y(x, t)=a \sin (w t-k x) \ldots(i)$
$\mu=8.0 \times 10^{-3}\, kg\, m ^{-1}$
Linear mass density,
Frequency of the tuning fork, $v=256\, Hz$
Amplitude of the wave, $a=5.0\, cm =0.05\, m \ldots (ii)$
Mass of the pan, $m=90 \,kg$
Tension in the string, $T=m g=90 \times 9.8=882\, N$
The velocity of the transverse wave $v$, is given by the relation
$v=\sqrt{\frac{T}{\mu}}$
$=\sqrt{\frac{882}{8.0 \times 10^{-3}}}=332 \,m / s$
Angular frequency, $\omega=2 \pi v$ $=2 \times 3.14 \times 256$
$=1608.5=1.6 \times 10^{3}\, rad / s\ldots(iii)$
Wavelength, $\lambda=\frac{v}{v}=\frac{332}{256} \,m$
$\therefore$ Propagation constant, $k=\frac{2 \pi}{\lambda}$
$=\frac{2 \times 3.14}{\frac{332}{256}}=4.84 \,m ^{-1}\ldots(i v)$
Substituting the values from equations $ (ii), (iii)$, and $(iv)$ in equation ($i$), we get the displacement equation:
$y(x, t)=0.05 \sin \left(1.6 \times 10^{3} t-4.84 x\right)\, m$
$L$ लम्बाई और $M$ द्रव्यमान की एक डोरी को एक सिरे से लटकाया गया है। मुक्त सिरे से $x$ दूरी पर अनुप्रस्थ तरंग की चाल होगी
$0.72\, m$ लंबे किसी स्टील के तार का द्रव्यमान $5.010^{-5}\, kg$ है । यद् तार पर तनाव $60 \,N$ है, तो तार पर अनुप्रस्थ तरंगों की चाल क्या है ?
क्षैतिज से $30°$ कोण बनाते हुये एक घर्षण विहीन नततल पर कसी हुयी एक घर्षण विहीन एवं हल्की घिरनी से $9.8 \times {10^{ - 3}}kg/{m^3}$ घनत्व का एक तार गुजरता है। दो द्रव्यमान $m$ एवं $M$ तार के दोनों सिरों से जुडे़ हैं इस प्रकार कि $m$ द्रव्यमान नत तल पर स्थित है एवं $M$ द्रव्यमान मुक्त रूप से ऊध्र्वाधरत: लटक रहा है। सम्पूर्ण निकाय संतुलन में है एवं एक अनुप्रस्थ तरंग $100 ms^{-1}$ के वेग से तार में संचरित होती है $m =$ ..... $kg$
$9 \times 10^{-3} \,kg \,cm ^{-3}$ घनत्व के एक तार को खींचकर $1$ मीटर दूरी पर लगे दो क्लैम्प्स् पर कस दिया जाता है। इस कारण तार में उत्पन्न विकृति (strain) $4.9 \times 10^{-4}$ हैं। इस स्थिति में तार में अनुप्रस्थ कंपन की निम्नतम आवृत्ति के निकटतम पूर्णांक कितना होगा (तार के यंग गुणांक का मान $\left.Y =9 \times 10^{10} \,Nm ^{-2}\right)$
दो दृढ़ टेकों के बीच तानित तार अपनी मूल विधा में $45 \,Hz$ आवृत्ति से कंपन करता है। इस तार का द्रव्यमान $3.5 \times 10^{-2} \;kg$ तथा रैखिक द्रव्यमान घनत्व $4.0 \times 10^{-2} \;kg m ^{-1} .$ है ।
$(a)$ तार पर अनुप्रस्थ तरंग की चाल क्या है, तथा
$(b)$ तार में तनाव कितना है ?