यदि किसी खींची हुई रस्सी में तनाव का मान प्रारम्भिक मान का दोगुना हो जाए, तो इस रस्सी पर चलने वाली अनुप्रस्थ तरंग की प्रारम्भिक एवं अंतिम चालों का अनुपात है :
$\sqrt{2}: 1$
$1: \sqrt{2}$
$1: 2$
$1: 1$
किसी एकसमान तार का प्रति एकांक लम्बाई द्रव्यमान $0.135\; g / cm$ है। इस तार में कोई अनुप्रस्थ तरंग उत्पन्न होती है जिसका निरूपण समीकरण $y =-0.21 \sin ( x +30 t )$ द्वारा किया गया है, यहाँ $x$ मीटर में तथा $t$ सेकण्ड में है। तार मे तनाव का अपेक्षित मान $x \times 10^{-2} \;N$ है। $x$ का मान $\dots$ होगा। (निकटतम संभावित पूर्णांक तक)
दोंनो सिरों पर परिबद्ध क्षैतिज तनित डोरी पाँचवी गुणवृत्ति समीकरण, $y(x, t)=(0.01 m ) \sin \left[\left(62.8 m ^{-1}\right) x \right] \cos \left[\left(628 s ^{-1}\right) t \right]$ द्वारा कम्पित हो रही है। यदि $\pi=3.14$ मान जाये तब निम्न प्रकथन सही है हैं -
$(A)$ निस्पंदो की संख्या $5$ है।
$(B)$ डोरी की लम्बाई $0.25 \ m$ है।
$(C)$ साम्यावस्था से डोरी के मध्य बिन्दु का अधिकतम विस्थापन $0.01 \ m$ है।
$(D)$ मूल आवृत्ति $100 \ Hz$ है।
$6.0$ द्रव्यमान के एक $60 \,cm$ लम्बे तार पर अनुप्रस्थ तरंगों की गति $90 \,ms ^{-1}$ है। यदि तार का यंग का गुणांक $16 \times 10^{11} \,Nm ^{-2}$ और इसके अनुप्रस्थ काट का क्षेत्रफल $1.0\, mm ^{2}$ हो, तो तार में हुए प्रसार का मान ..... है।
द्रव्यमान $m _{1}$ तथा लम्बाई $L$ की कोई एकसमान रस्सी किर्सी दृढ टेक से ऊर्ध्वाधर लटकी है। इस रस्री के मुक्त सिरे से द्रव्यमान $m _{2}$ का कोर्ई गुटका जुड़ा है । रस्सी के मुक्त सिरे पर तरंगदैर्ध्य $\lambda_{1}$ का कोई अनुप्रस्थ स्पन्द उत्पत्र किया जाता है। यदि रस्सी के शीर्प तक पहुँचने पर इस स्पन्द की तरंगदैर्ध्य $\lambda_{2}$ हो जाती है, तब अनुपात $\lambda_{2} / \lambda_{1}$ का मान है
$20 \,m$ लम्बाई की एकसमान डोरी को एक दृढ़ आधार से लटकाया गया है। इसके निचले सिरे से एक सूक्ष तरंग-स्पंद चालित होता है। ऊपर अधार तक पहुँचने में लगने वाला समय है:
$\left(g=10\, ms ^{-2}\right.$ लें $)$