$K$ बल नियतांक वाली एक स्प्रिंग का एक-चौथाई भाग काट कर अलग कर दिया जाता है। शेष स्प्रिंग का बल नियतांक होगा
$\frac{3}{4}K$
$\frac{4}{3}K$
$K$
$4 K$
$K$ बल-नियतांक वाली एक आदर्श स्प्रिंग को छत से लटकाया गया है एवं $M$ द्रव्यमान का एक गुटका इसके निचले सिरे से जोड़ा गया है। द्रव्यमान $M$ को स्प्रिंग की सामान्य लंबाई से छोड़ने पर स्प्रिंग में अधिकतम खिंचाव होगा
$K$ और $2K$ बल नियतांक की दो स्प्रिंग एक द्रव्यमान से चित्रानुसार जुड़ी हैं। द्रव्यमान के दोलनों की आवृत्ति है
पाँच एक समान स्प्रिंगों के निम्न तीन संयोजन चित्र में उपयोग किया गया हैं। संयोजन (i) (ii) तथा (iii) में ऊध्र्वाधर दोलनों के आवर्तकाल का अनुपात होगा
घर्षणहीन क्षैतिज तल पर पड़ी हुई $k$ बल स्थिरांक की द्रव्यमान रहित स्प्रिंग के एक सिरे से $m$ द्रव्यमान का कण जुड़ा हुआ है। इस स्प्रिंग का दूसरा सिरा बद्ध है। यह कण अपनी साम्यावस्था से समय $t=0$ पर प्रारम्भिक क्षैतिज वेग $u_0$ से गतिमान हो रहा है। जब कण की गति $0.5 u_0$ होती है, यह एक दृढ़ दीवार से प्रत्यास्थ संघट्ट करता है। इस संघट्ट के बाद -
$(A)$ जब कण अपनी साम्यावस्था से लौटता है इसकी गति $u_0$ होती है।
$(B)$ जब कण अपनी साम्यावस्था से पहली बार गुजरता है वह समय $t=\pi \sqrt{\frac{m}{k}}$ है।
$(C)$ जब स्प्रिंग से सम्पीड़न अधिकतम होता है वह समय $t =\frac{4 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
$(D)$ जब कण अपनी साम्यावस्था से दूसरी बार गुजरता है वह समय $t =\frac{5 \pi}{3} \sqrt{\frac{ m }{ k }}$ है।
निचे दिए गए चित्र में, $\mathrm{M}=490 \mathrm{~g}$ द्रव्यमान का एक गुटका एक घर्षणरहित मेज पर रखा है, एवं समान स्प्रिंग नियतांक $\left(\mathrm{K}=2 \mathrm{~N} \mathrm{~m}^{-1}\right)$ वाली दो स्प्रिंगों से जुडा है। यदि गुटके को ' $\mathrm{X}$ ' $\mathrm{m}$ की क्षैतिज दूरी से विस्थापित किया जाता है, तो $14 \pi$ सेकन्ड में इसके द्वारा पूर्ण किए गए दोलनों की संख्या होगी।