समान द्रव्यमान के दो कण $A$ और $B$ दो द्रव्यमानहीन कमानियों, जिनके कमानी नियतांक क्रमशः $K _{1}$ और $K _{2}$ हैं, से निलंबित हैं। यदि दोलन करते समय अधिकतम वेग समान हैं, तो $A$ और $B$ के आयामों का अनुपात है।

  • [JEE MAIN 2021]
  • A

    $\frac{ K _{2}}{ K _{1}}$

  • B

    $\frac{ K _{1}}{ K _{2}}$

  • C

    $\sqrt{\frac{ K _{1}}{ K _{2}}}$

  • D

    $\sqrt{\frac{ K _{2}}{ K _{1}}}$

Similar Questions

एक द्रव्यमान-रहित स्प्रिंग, जिसका द्रढ़ता गुणांक (stiffness constant) $k$ है, के एक छोर पर $M$ द्रव्यमान का एक गुटका जुडा है, तथा दूसरे छोर को द्रढ़ दीवार से जोड़ा गया है। यह गुटका एक समतल घर्षण-रहित सतह पर एक संतुलित स्थिति $x_0$ के गिर्द छोटे आयाम $A$ से दोलन करता है। यहाँ दो परिस्थितियां मानिए : ($i$) जब गुटका $x_0^6$ पर है और ($ii$) जब गुटका $x=x_0+A$ पर है। दोनों परिस्थितियों में द्रव्यमान $m( < M)$ के एक कण को गुटके पर धीरे से इस प्रकार रखा जाता है की वंह तुरंत गुटके से चिपक जाता है। कण को गुटके के ऊपर रखने के बाद गति के बारे में निम्नलिखित में से कौनसा/कौनसे कथन सत्य है/हैं?

$(A)$ पहली परिस्थिति में दोलन का आयाम $\sqrt{\frac{M}{m+M}}$ भाज्य (factor) से परिवर्तित होता है, जबकि दूसरी परिस्थिति में यह अपरिवर्तित रहता है

$(B)$ दोनों परिस्थितियों में दोलन का अंतिम समयकाल समान है,

$(C)$ दोनों परिस्थितियों में सम्पूर्ण ऊर्जा कम हो जाती है

$(D)$ सम्मिलित द्रव्यमानों की $x_0$ पर तान्क्षणिक गति दोनों परिस्थितियों में कम हो जाती है

  • [IIT 2016]

स्प्रिंग स्थिरांक $k$ वाली एक स्प्रिंग को काटकर दो हिस्से इस प्रकार किये जाते हैं कि एक हिस्सा दूसरे से लम्बाई में दुगुना है। तब लम्बे हिस्से का स्प्रिंग स्थिरांक होगा

  • [IIT 1999]

कमानी स्थिरांक $K$ की कमानी से जुडे किसी पिण्ड की गति आरेख में दर्शाए अनुसार है।

गति का समीकरण $x ( t )= A \sin \omega t + B \cos \omega t$ द्वारा दिया गया है, यहाँ $\omega=\sqrt{\frac{ K }{ m }}$ मान लीजिए समय $t =0$ पर, पिण्ड की स्थिति $x (0)$ तथा वेग $v (0)$ है, तब इसका विस्थापन भी, $x ( t )= C \cos (\omega t -\phi)$, द्वारा निरूपित होगा, यहाँ $C$ और $\phi$ है।

  • [JEE MAIN 2021]

एक स्प्रिंग तुला की स्केल $0$ से  $10\, kg$ तक मापन करती है तथा इसकी लम्बाई $0.25\, m$ है। स्प्रिंग तुला से लटकी हुई एक वस्तु $\frac{\pi }{{10}}\sec$ के आवर्तकाल से ऊध्र्वाधर दोलन करती है। लटकी हुई वस्तु का द्रव्यमान ..... $kg$ होगा, (स्प्रिंग का द्रव्यमान नगण्य है) 

किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग $\omega$ से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब $x_{0}$ दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केन्द्र से समय $t=0$ पर $v_{0}$ वेग से गुजरता है। प्राचल $\omega . x_{0}$ तथा $v_{0}$ के पदों में परिणामी दोलन का आयाम ज्ञात करिये। [संकेत: समीकरण $x=a \cos (\omega t+\theta)$ से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है। ]