एक समूह की पाँच संख्याओं का माध्य $8$ तथा प्रसरण $18$ है तथा दूसरे समूह की $3$ संख्याओं का माध्य $8$ तथा प्रसरण $24$ है। तब संख्याओं के संयुक्त समूह का प्रसरण है
$42$
$20.25$
$18$
इनमें से कोई नहीं
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा
किसी चर $x$ का मानक विचलन है। तब चर $\frac{{ax + b}}{c}$ का मानक विचलन है, (जहाँ $a, b, c$ अचर है)
मान लीजिये की $n \geq 3$ एक प्राकृत संख्या है। दी गयी संख्याओं की सूची $x_1, x_2, \ldots, x_n$ का औसत तथा मानक विचलन क्रमानुसार $\mu$ और $\sigma$ है। एक नयीसंख्याओं की सूची $y_1, y_2, \ldots, y_n$ इस प्रकार बनाई जाती हैं कि $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ और प्रत्येक $j=3,4, \ldots, n$ के लिए $y_j=x_j$ । यदि नयी सूची का औसत तथा मानक विचलन क्रमानुसार $\hat{\mu}$ और $\hat{\sigma}$ है तो निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य है?
माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :
$(2n +1)$ प्रेक्षणों ${x_1},\, - {x_1},\,{x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ तथा $0$ (शून्य) के लिये (जहाँ $x$ के सभी मान भिन्न है)। माना $S.D$ तथा $M.D.$ क्रमश: मानक विचलन तथा माध्यिका प्रदर्शित करते हैं, तब निम्न में से कौनसा सदैव सत्य है