- Home
- Standard 11
- Mathematics
One vertex of the equilateral triangle with centroid at the origin and one side as $x + y - 2 = 0$ is
$( - 1, - 1)$
$(2,2)$
$( - 2, - 2)$
None of these
Solution

(c) Let the co-ordinate of vertex $A$ be $(h,k)$. Then $AD$ is perpendicular to $BC$, therefore $OA\, \bot \,BC$
$⇒$ $\frac{{k – 0}}{{h – 0}} \times \frac{{ – 1}}{1} = – 1 \Rightarrow k = h$…..$(i)$
Let the coordinates of $D$ be$(\alpha ,\beta )$. Then the co-ordinates of $O$ are $\left( {\frac{{2\alpha + h}}{{2 + 1}},\frac{{2\beta + k}}{{2 + 1}}} \right)$. Therefore $\frac{{2\alpha + h}}{3} = 0$ and $\frac{{2\beta + k}}{3} = 0$ $ \Rightarrow \alpha = – \frac{h}{2},\beta = \frac{{ – k}}{2}$.
Since $(\alpha ,\beta )$lies on $x + y – 2 = 0$
$⇒$ $\alpha + \beta – 2 = 0$
$⇒$ $ – h/2 – k/2 – 2 = 0$==>$h + k + 4 = 0$
$⇒$ $2h + 4 = 0 \Rightarrow h = k = – 2$,[from (i)]
Hence the coordinates of vertex $A$ are $( – 2, – 2)$.