Gujarati
9.Straight Line
hard

One vertex of the equilateral triangle with centroid at the origin and one side as $x + y - 2 = 0$ is

A

$( - 1, - 1)$

B

$(2,2)$

C

$( - 2, - 2)$

D

None of these

Solution

(c) Let the co-ordinate of vertex $A$ be $(h,k)$. Then $AD$ is perpendicular to $BC$, therefore $OA\, \bot \,BC$

$⇒$  $\frac{{k – 0}}{{h – 0}} \times \frac{{ – 1}}{1} = – 1 \Rightarrow k = h$…..$(i)$

Let the coordinates of $D$ be$(\alpha ,\beta )$. Then the co-ordinates of $O$ are $\left( {\frac{{2\alpha + h}}{{2 + 1}},\frac{{2\beta + k}}{{2 + 1}}} \right)$. Therefore $\frac{{2\alpha + h}}{3} = 0$ and $\frac{{2\beta + k}}{3} = 0$ $ \Rightarrow \alpha = – \frac{h}{2},\beta = \frac{{ – k}}{2}$.

Since $(\alpha ,\beta )$lies on $x + y – 2 = 0$

$⇒$ $\alpha + \beta – 2 = 0$

$⇒$  $ – h/2 – k/2 – 2 = 0$==>$h + k + 4 = 0$

$⇒$  $2h + 4 = 0 \Rightarrow h = k = – 2$,[from (i)]

Hence the coordinates of vertex $A$ are $( – 2, – 2)$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.