यदि किसी समबाहु त्रिभुज का केन्द्रक $(0, 0)$ एवं एक भुजा $x + y - 2 = 0$ हो, तो उसका एक शीर्ष होगा
$( - 1, - 1)$
$(2,2)$
$( - 2, - 2)$
इनमें से कोई नहीं
$L _1$ और $L _2$ द्वारा परिभाषित रेखाओं
$L _1: x \sqrt{2}+ y -1=0 \text { और } L _2: x \sqrt{2}- y +1=0$
पर विचार कीजिए। किसी नियत अचर (fixed constant) $\lambda$ के लिए, मान लीजिए कि $C$ एक बिन्दु $P$ का ऐसा बिन्दुपथ (locus) है कि $P$ से $L _1$ की दूरी और $P$ से $L _2$ की दूरी का गुणनफल $\lambda^2$ है। रेखा $y =2 x +1, C$ को दो बिन्दुओं $R$ और $S$ पर मिलती है, जहाँ $R$ और $S$ के बीच की दूरी $\sqrt{270}$ है।
मान लीजिए कि RS का लंब समद्विभाजक (perpendicular bisector), $C$ को दो भिन्न बिन्दुओं R' और $S ^{\prime}$ पर मिलता है। मान लीजिए कि $R ^{\prime}$ और $S ^{\prime}$ के बीच की दूरी के वर्ग (square of the distance) का मान $D$ है।
($1$) $\lambda^2$ का मान. . . . . है।
($2$) $D$ का मान. . . . . है।
रेखाओं $x = 0,y = 0$ व $\frac{x}{a} + \frac{y}{b} = 1$ द्वारा बने त्रिभुज का क्षेत्रफल है
यदि समान्तर चतुभुज के निर्देशांक क्रमश: $(0, 0)$, $(1, 0)$ $(2, 2)$ तथा $(1, 2)$ हैं, तो विकर्णों के बीच कोण है
एक सरल रेखा $ax + by + c = 0$ सदैव बिन्दु $(1, -2)$ से गुजरती है, तब $a, b, c$ होंगे
शीर्षों $A (2,3), B (4,-1)$ और $C (1,2)$ वाले त्रिभुज $ABC$ के शीर्ष $A$ से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।