दीर्घवृत्त $9{x^2} + 36{y^2} = 324$, जिसकी नाभियाँ $S$ तथा $S'$ है, पर $P$ कोई बिन्दु है, तब $SP + S'P$ का मान होगा
$3$
$12$
$36$
$324$
एक दीर्घवृत्त की उत्केन्द्रता $\frac{2}{3}$, नाभिलम्ब $5$ तथा केन्द्र $(0, 0)$ हैं, तो दीर्घवृत्त का समीकरण है
मान लीजिए कि $x^2=4 k y, k > 0$ एक परवलय है, जिसका शीर्ष $A$ है। मान लें कि $B C$ इसका नाभि लंब $(latus\,rectum)$ है। एक दीर्घवृत, जिसका केंद्र $B C$ पर है और परवलय को $A$ पर छूता है, $B C$ को $D$ एवं $E$ बिन्दुओं पर इस प्रकार काटता है कि $B D=D E=E C(B, D, E, C$ के क्रम में)। दीर्घवृत की उत्केन्द्रता $(eccentricity)$ निम्न है :
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$16 x^{2}+y^{2}=16$
एक व्यक्ति रेसकोर्स के चारों और दौड़ता हुआ यह नोट करता है कि उससे दो ध्वज स्तम्भों की दूरियों का योग सदैव $10$ मीटर रहता है और ध्वज स्तम्भों के बीच दूरी $8$ मीटर है। दौडने के मार्ग द्वारा परिबद्ध क्षेत्रफल, वर्ग मीटर में है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर