Product of all the solution of the equation ${x^{1 + {{\log }_{10}}x}} = 100000x$ is
$10$
$10^5$
$10^{-5}$
$1$
If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is
The function $f$ satisfies the functional equation $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ for all real $x \ne 1$. The value of $f(7)$ is
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then
If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
Let $f : R -\{0,1\} \rightarrow R$ be a function such that $f(x)+f\left(\frac{1}{1-x}\right)=1+x$. Then $f(2)$ is equal to :