Show that the Modulus Function $f : R \rightarrow R$ given by $(x)=|x|$, is neither one - one nor onto, where $|x|$ is $x$, if $x$ is positive or $0$ and $| X |$ is $- x$, if $x$ is negative.
$f:$ $R \rightarrow R$ is given by $f(x) = |x| = \left\{ {\begin{array}{*{20}{l}}
X&{{\text{ if }}X \geqslant 0} \\
{ - X}&{{\text{ if }}X < 0}
\end{array}} \right.$
It is clear that $f(-1)=|-1|=1$ and $f(1)=|1|=1$
$\therefore f(-1)=f(1),$ but $-1 \neq 1$
$\therefore f$ is not one $-$ one.
Now, consider $-1 \in R$
It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any
element $x$ in domain $R$ such that $f(x)=|x|=-1$
$\therefore f$ is not onto.
Hence, the modulus function is neither one-one nor onto.
If $0 < x < \frac{\pi }{2},$ then
Domain of function $f(x) = {\sin ^{ - 1}}5x$ is
The domain of the derivative of the function $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ is
Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.
Let $A$ denote the set of all real numbers $x$ such that $x^3-[x]^3=\left(x-[x]^3\right)$, where $[x]$ is the greatest integer less than or equal to $x$. Then,