Show that the Modulus Function $f : R \rightarrow R$ given by $(x)=|x|$, is neither one - one nor onto, where $|x|$ is $x$, if $x$ is positive or $0$ and $| X |$ is $- x$, if $x$ is negative.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$f:$ $R \rightarrow R$ is given by $f(x) = |x| = \left\{ {\begin{array}{*{20}{l}}
  X&{{\text{ if }}X \geqslant 0} \\ 
  { - X}&{{\text{ if }}X < 0} 
\end{array}} \right.$

It is clear that $f(-1)=|-1|=1$ and $f(1)=|1|=1$

$\therefore f(-1)=f(1),$ but $-1 \neq 1$

$\therefore f$ is not one $-$ one.

Now, consider $-1 \in R$

It is known that $f(x)=|x|$ is always non-negative. Thus, there does not exist any

element $x$ in domain $R$ such that $f(x)=|x|=-1$

$\therefore f$ is not onto.

Hence, the modulus function is neither one-one nor onto.

Similar Questions

Domain of function $f(x) = log|5{x} - 2x|$ is $x \in R - A$, then $n(A)$ is (where $\{.\}$ denotes fractional part function)

The period of the function $f(x) = e^{x -[x]+|cos\, \pi x|+|cos\, 2\pi x|+....+|cos\, n\pi x|}$ (where $[.]$ denotes greatest integer function); is:-

If $f:\left\{ {1,2,3,4} \right\} \to \left\{ {1,2,3,4} \right\}$ and $y=f(x)$ be a function such that $\left| {f\left( \alpha  \right) - \alpha } \right| \leqslant 1$,for $\alpha  \in \left\{ {1,2,3,4} \right\}$ then total number of such functions are

Let $A=\{0,1,2,3,4,5,6,7\} .$ Then the number of bijective functions $f: A \rightarrow A$such that $f(1)+f(2)=3-f(3)$ is equal to $.....$

  • [JEE MAIN 2021]

The range of function $f : R \rightarrow  R$, $f(x) = \frac{{{{(x\, + \,1)}^4}}}{{{x^4} + \,1}}$ is