3.Trigonometrical Ratios, Functions and Identities
easy

ત્રિકોણ $ABC$ માટે ,$\sin A + \sin B + \sin C  = . . . .$

A

$4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

B

$4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$

C

$4\cos \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

D

$4\cos \frac{A}{2}\sin \frac{B}{2}\cos \frac{C}{2}$

Solution

(b) In $\Delta ABC,A + B + C = 180^\circ $

$ \Rightarrow \sin A + \sin B + \sin C $

$= 2\sin \frac{{A + B}}{2}\cos \frac{{A – B}}{2} + 2\sin \frac{C}{2}\cos \frac{C}{2}$

$ = 2\sin \left( {\frac{\pi }{2} – \frac{C}{2}} \right)\cos \frac{{A – B}}{2} + 2\cos \frac{C}{2}\sin \left( {\frac{\pi }{2} – \frac{{\overline {A + B} }}{2}} \right)$

$ = 2\cos \frac{C}{2}\cos \frac{{A – B}}{2} + 2\cos \frac{C}{2}\cos \frac{{A + B}}{2}$

$ = 2\cos \frac{C}{2}\left[ {\cos \frac{{A – B}}{2} + \cos \frac{{A + B}}{2}} \right]$

$ = 2\cos \frac{C}{2}\left( {2\cos \frac{A}{2}\cos \frac{B}{2}} \right) $

$= 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$ .

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.