$\cos 15^\circ - \sin 15^\circ = . . .$
$\frac{1}{{\sqrt 2 }}$
$\frac{1}{2}$
$ - \frac{1}{{\sqrt 2 }}$
$0$
$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}} =$
નીચેનામાંથી ક્યાં સમીકરણની કિમત એક થાય
$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $
$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
જો $\sin 2\theta + \sin 2\phi = 1/2$ અને $\cos 2\theta + \cos 2\phi = 3/2$, તો ${\cos ^2}(\theta - \phi ) = $