$\cos 15^\circ - \sin 15^\circ  = . . .$

  • A

    $\frac{1}{{\sqrt 2 }}$

  • B

    $\frac{1}{2}$

  • C

    $ - \frac{1}{{\sqrt 2 }}$

  • D

    $0$

Similar Questions

$\cos \frac{{2\pi }}{{15}}\cos \frac{{4\pi }}{{15}}\cos \frac{{8\pi }}{{15}}\cos \frac{{16\pi }}{{15}}  =$

  • [IIT 1985]

નીચેનામાંથી ક્યાં સમીકરણની કિમત એક થાય 

$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $

  • [IIT 1984]

$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $

જો $\sin 2\theta + \sin 2\phi = 1/2$ અને $\cos 2\theta + \cos 2\phi = 3/2$, તો ${\cos ^2}(\theta - \phi  ) = $