3.Trigonometrical Ratios, Functions and Identities
medium

સાબિત કરો કે : $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Option A
Option B
Option C
Option D

Solution

$L.H.S. $ $=\cos 4 x$

$=\cos 2(2 x)$

$=1-2 \sin ^{2} 2 x\left[\cos 2 A=1-2 \sin ^{2} A\right]$

$=1-2(2 \sin x \cos x)^{2}[\sin 2 A=2 \sin A \cos A]$

$=1-8 \sin ^{2} x \cos ^{2} x$

$=$ $R.H.S.$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.