Prove the associative law of vector addition.
Consider the vectors of shown in the figure. To find the associative law of $\vec{A}, \vec{B}$ and $\vec{C}$ Draw $\vec{A}=\overrightarrow{O P}, \vec{B}=\overrightarrow{P Q}$ and $\vec{C}=\overrightarrow{Q R}$
By triangle law of vector we get, Figure $(b)$
From the figure $\Delta \mathrm{OPQ}$
$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$
$\mathrm{A}+\mathrm{B}=\mathrm{OP}+\mathrm{PQ}$
$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$
By adding $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{QR}}$ in both the sides
$(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QR}}$
We get $\quad(\vec{A}+\vec{B})+\vec{C}=\overrightarrow{O R} \ldots \ldots$ $(i)$
If $| A + B |=| A |+| B |$ the angle between $\overrightarrow A $and $\overrightarrow B $ is ....... $^o$
The angle between vector $\vec{Q}$ and the resultant of $(2 \overrightarrow{\mathrm{Q}}+2 \overrightarrow{\mathrm{P}})$ and $(2 \overrightarrow{\mathrm{Q}}-2 \overrightarrow{\mathrm{P}})$ is:
The resultant force of $5 \,N$ and $10 \,N$ can not be ........ $N$
Which pair of the following forces will never give resultant force of $2\, N$
Explain the parallelogram method for vector addition. Also explain that this is comparable to triangle method.