Prove the associative law of vector addition.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider the vectors of shown in the figure. To find the associative law of $\vec{A}, \vec{B}$ and $\vec{C}$ Draw $\vec{A}=\overrightarrow{O P}, \vec{B}=\overrightarrow{P Q}$ and $\vec{C}=\overrightarrow{Q R}$

By triangle law of vector we get, Figure $(b)$

From the figure $\Delta \mathrm{OPQ}$

$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$

$\mathrm{A}+\mathrm{B}=\mathrm{OP}+\mathrm{PQ}$

$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$

By adding $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{QR}}$ in both the sides

$(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QR}}$

We get $\quad(\vec{A}+\vec{B})+\vec{C}=\overrightarrow{O R} \ldots \ldots$ $(i)$

885-s59

Similar Questions

If $\overrightarrow A = 4\hat i - 3\hat j$ and $\overrightarrow B = 6\hat i + 8\hat j$ then magnitude and direction of $\overrightarrow A \, + \overrightarrow B $ will be

If $\overrightarrow R$ is the resultant vector of two vectors $\overrightarrow A $ and $\overrightarrow B $, then  $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $.

Given that; $A = B = C$. If $\vec A + \vec B = \vec C,$ then the angle between $\vec A$ and $\vec C$ is $\theta _1$. If $\vec A + \vec B+ \vec C = 0,$ then the angle between $\vec A$ and $\vec C$ is $\theta _2$. What is the relation between $\theta _1$ and $\theta _2$ ?

“Explain Triangle method (head to tail method) of vector addition.”

If $|\,\vec A + \vec B\,|\, = \,|\,\vec A\,| + |\,\vec B\,|$, then angle between $\vec A$ and $\vec B$ will be ....... $^o$

  • [AIPMT 2001]