Prove the associative law of vector addition.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider the vectors of shown in the figure. To find the associative law of $\vec{A}, \vec{B}$ and $\vec{C}$ Draw $\vec{A}=\overrightarrow{O P}, \vec{B}=\overrightarrow{P Q}$ and $\vec{C}=\overrightarrow{Q R}$

By triangle law of vector we get, Figure $(b)$

From the figure $\Delta \mathrm{OPQ}$

$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$

$\mathrm{A}+\mathrm{B}=\mathrm{OP}+\mathrm{PQ}$

$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$

By adding $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{QR}}$ in both the sides

$(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QR}}$

We get $\quad(\vec{A}+\vec{B})+\vec{C}=\overrightarrow{O R} \ldots \ldots$ $(i)$

885-s59

Similar Questions

Let the angle between two nonzero vectors $\overrightarrow A $ and $\overrightarrow B $ be $120^°$ and resultant be $\overrightarrow C $

Two vectors having equal magnitudes of $x\, units$ acting at an angle of $45^o$ have resultant $\sqrt {\left( {2 + \sqrt 2 } \right)} $ $units$. The value of $x$ is

  • [AIIMS 2009]

If $| A |=2$ and $| B |=4$ and angle between them is $60^{\circ}$, then $| A - B |$ is

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........

Establish the following vector inequalities geometrically or otherwise:

$(a)$ $\quad| a + b | \leq| a |+| b |$

$(b)$ $\quad| a + b | \geq| a |-| b |$

$(c)$ $\quad| a - b | \leq| a |+| b |$

$(d)$ $\quad| a - b | \geq| a |-| b |$

When does the equality sign above apply?