Prove the associative law of vector addition.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Consider the vectors of shown in the figure. To find the associative law of $\vec{A}, \vec{B}$ and $\vec{C}$ Draw $\vec{A}=\overrightarrow{O P}, \vec{B}=\overrightarrow{P Q}$ and $\vec{C}=\overrightarrow{Q R}$

By triangle law of vector we get, Figure $(b)$

From the figure $\Delta \mathrm{OPQ}$

$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$

$\mathrm{A}+\mathrm{B}=\mathrm{OP}+\mathrm{PQ}$

$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$

By adding $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{QR}}$ in both the sides

$(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QR}}$

We get $\quad(\vec{A}+\vec{B})+\vec{C}=\overrightarrow{O R} \ldots \ldots$ $(i)$

885-s59

Similar Questions

Find the resultant of three vectors $\overrightarrow {OA} ,\,\overrightarrow {OB} $ and $\overrightarrow {OC} $ shown in the following figure. Radius of the circle is $R$.

The vectors $5i + 8j$ and $2i + 7j$ are added. The magnitude of the sum of these vector is

If $A$ and $B$ are two non-zero vectors having equal magnitude, the angle between the vectors $A$ and $A - B$ is

The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is

Two forces $F_1 = 3N$ at $0^o$ and $F_2 = 5N$ at $60^o$ act on a body. Then a single force that would balance the two forces must have a magnitude of .......... $N$