Prove the associative law of vector addition.
Consider the vectors of shown in the figure. To find the associative law of $\vec{A}, \vec{B}$ and $\vec{C}$ Draw $\vec{A}=\overrightarrow{O P}, \vec{B}=\overrightarrow{P Q}$ and $\vec{C}=\overrightarrow{Q R}$
By triangle law of vector we get, Figure $(b)$
From the figure $\Delta \mathrm{OPQ}$
$\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow$
$\mathrm{A}+\mathrm{B}=\mathrm{OP}+\mathrm{PQ}$
$\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{OQ}}$
By adding $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{QR}}$ in both the sides
$(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{QR}}$
We get $\quad(\vec{A}+\vec{B})+\vec{C}=\overrightarrow{O R} \ldots \ldots$ $(i)$
Find the resultant of three vectors $\overrightarrow {OA} ,\,\overrightarrow {OB} $ and $\overrightarrow {OC} $ shown in the following figure. Radius of the circle is $R$.
The vectors $5i + 8j$ and $2i + 7j$ are added. The magnitude of the sum of these vector is
The vector that must be added to the vector $\hat i - 3\hat j + 2\hat k$ and $3\hat i + 6\hat j - 7\hat k$ so that the resultant vector is a unit vector along the $y-$axis is
Two forces $F_1 = 3N$ at $0^o$ and $F_2 = 5N$ at $60^o$ act on a body. Then a single force that would balance the two forces must have a magnitude of .......... $N$