સદિશોના સરવાળા માટે જૂથનો નિયમ સમજાવો. અથવા સાબિત કરો કે સદિશ સરવાળા માટે જૂથના નિયમનું પાલન થાય છે.
આકૃતિમાં દર્શાવ્યા અુનસાર સદિશોના સરવાળા માટે ત્રિકોણની રીત અનુસાર સદિશ $\overrightarrow{ A }$ માં સદિશ $\overrightarrow{ B }$ ઉમેરતાં $\overrightarrow{ OQ }=\overrightarrow{ A }+\overrightarrow{ B }$ મળે છે.
હવે $\overrightarrow{ OQ }$ માં $\overrightarrow{ C }$ એટલે કે $\overrightarrow{ QR }$ ઉમેરતાં,
$\therefore \overrightarrow{ OR }=\overrightarrow{ OQ }+\overrightarrow{ QR }$
$\therefore \overrightarrow{ OR }=(\overrightarrow{ A }+\overrightarrow{ B })+\overrightarrow{ C }$
$\overrightarrow{ B }$ માં $\overrightarrow{ C }$ ઉમેરતાં $\overrightarrow{ PR }$ મળે છે.
$\overrightarrow{ PR }=\overrightarrow{ B }+\overrightarrow{ C }$
$\overrightarrow{ PR }$ માં $\overrightarrow{ A }$ ने એવી રિતે ઉમેરેલ છે જેથી $\overrightarrow{ A }$ ની લંબાઈ, દિશા ન બદલાય તથા $\overrightarrow{ A }$ નું શીર્ષ $\overrightarrow{ PR }$ ના યુદ્ધ પર આવે. (નોંધ : એક સદિશના પુંજ પર બીજા સદિશનું શીર્ષ આવવું જોઈએ.)
$\overrightarrow{ OR }=\overrightarrow{ OP }+\overrightarrow{ PR }$
$\overrightarrow{ OR }=\overrightarrow{ A }+(\overrightarrow{ B }+\overrightarrow{ C })$
પરિણામ $(1)$ અને $(2)$ પરથી,
$(\overrightarrow{ A }+\overrightarrow{ B })+\overrightarrow{ C }=\overrightarrow{ A }+(\overrightarrow{ B }+\overrightarrow{ C })$
આમ, સદિશોના સરવાળા માટે જૂથના નિયમનું પાલન થાય છે.
સદિશ $\overrightarrow a $ ને $d\theta $ખૂણે ફેરવતાં $|\Delta \overrightarrow a |$ અને $\Delta a$ મેળવો.
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
$\overrightarrow A = 4\hat i - 3\hat j$ અને $\overrightarrow B = 6\hat i + 8\hat j$ હોય તો , $\overrightarrow A \, + \overrightarrow B $ નુ મુલ્ય અને દિશા મેળવો.
બે સદિશોના પરિણામી સદિશનું મહત્તમ મૂલ્ય $17\, unit$ અને ન્યુનતમ મૂલ્ય $7\, unit$ છે,તો આ બંને સદિશો લંબ હોય,તો તેના પરિણામી સદિશનું મૂલ્ય કેટલું થશે?