Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos \theta+\cos \theta}=\tan \theta$

$L.H.S.=\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}$

$=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}$

$=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left\{2\left(1-\sin ^{2} \theta\right)-1\right\}}$

$=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left(1-2 \sin ^{2} \theta\right)}$

$=\tan \theta= R \cdot H.S.$

Similar Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$

Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

In $\triangle$ $ABC,$ right-angled at $B$, $AB =5\, cm$ and $\angle ACB =30^{\circ}$ (see $Fig.$). Determine the lengths of the sides $BC$ and $AC .$

In a right triangle $A B C$, right-angled at $B$. if $\tan A =1,$ then verify that $2 \sin A \cos A=1$