નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિત કરો :
$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$
$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos \theta+\cos \theta}=\tan \theta$
$L.H.S.=\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}$
$=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}$
$=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left\{2\left(1-\sin ^{2} \theta\right)-1\right\}}$
$=\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left(1-2 \sin ^{2} \theta\right)}$
$=\tan \theta= R \cdot H.S.$
નિત્યસમ $\sec ^{2} \theta=1+\tan ^{2} \theta$ નો ઉપયોગ કરીને સાબિત કરો કે, $\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$
લધુ કોણ $\angle B$ તથા $\angle Q$ માટે $\sin B =\sin Q$ છે. સાબિત કરો કે $\angle B =\angle Q$.
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$
કિંમત શોધો :
$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
કિંમત શોધો :
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$