નીચેના નિયમોમાં જેમના માટે પદાવલિ વ્યાખ્યાયિત કરી છે તે ખૂણા લઘુકોણ છે. આ નિત્યસમો સાબિતકરો :

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

$L.H.S.=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

$\quad=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A$

$\quad=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)$

$\quad=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)$

$\quad=7+\tan ^{2} A+\cot ^{2} A$

$=R \cdot H . S.$

Similar Questions

જો $3 \cot A=4$ હોય, તો નક્કી કરો કે $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ છે કે નહિ.

નીચેના વિધાનો સત્ય છે કે અસત્ય તે જણાવો. તમારા જવાબની યથાર્થતા ચકાસો :

$A =0^{\circ}$ માટે $\cot$ $A$ અવ્યાખ્યાયિત છે.

જો $A, B$ અને $C$ એ $\triangle ABC$ ના ખૂણા હોય,તો સાબિત કરો કે,

$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

$\sin 67^{\circ}+\cos 75^{\circ}$ ને $0^{\circ}$ અને $45^{\circ}$ વચ્ચેના માપવાળા ખૂણાના ત્રિકોણમિતીય ગુણોત્તર તરીકે દર્શાવો.

જો $\sec \theta=\frac{13}{12}$ હોય, તો બાકીના બધા જ ત્રિકોણમિતીય ગુણોત્તરો શોધો.