निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$
$L.H.S.=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$
$\quad=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A$
$\quad=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)$
$\quad=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)$
$\quad=7+\tan ^{2} A+\cot ^{2} A$
$=R \cdot H . S.$
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\left(\frac{1+\tan ^{2} A}{1+\cot ^{2} A}\right)=\left(\frac{1-\tan A}{1-\cot A}\right)^{2}=\tan ^{2} A$
$\Delta ABC$ में, जिसका कोण $B$ समकोण है , $AB =24\, cm$ और $BC =7\, cm$ है। निम्नलिखित का मान ज्ञात कीजिए :
$(i)$ $\sin A , \cos A$
$(ii)$ $\sin C, \cos C$
बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$A =0^{\circ}$ पर $\cot A$ परिभाषित नहीं है।
बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$(i)$ $\tan A$ का मान सदैव $1$ से कम होता है।
$(ii)$ कोण $A$ के किसी मान के लिए $\sec A =\frac{12}{5}$
यदि $3 \cot A =4$, तो जाँच कीजिए कि $\frac{1-\tan ^{2} A }{1+\tan ^{2} A }=\cos ^{2} A -\sin ^{2} A$ है या नहीं।