Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$

$L.H.S.=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$

$\quad=\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A+2 \cos A \sec A$

$\quad=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)$

$\quad=(1)+\left(1+\cot ^{2} A+1+\tan ^{2} A\right)+(2)+(2)$

$\quad=7+\tan ^{2} A+\cot ^{2} A$

$=R \cdot H . S.$

Similar Questions

In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.

Evaluate the following:

$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

State whether the following are true or false. Justify your answer.

$\sin \theta=\cos \theta$ for all values of $\theta$

In $Fig.$ find $\tan P-\cot R .$

Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between $0^{\circ}$ and $45^{\circ}$