Radioactive element decays to form a stable nuclide, then the rate of decay of reactant $\left( {\frac{{dN}}{{dt}}} \right)$ will vary with time $(t) $ as shown in figure
Half lives for $\alpha$ and $\beta$ emission of a radioactive material are $16$ years and $48$ years respectively. When material decays giving $\alpha$ and $\beta$ emission simultaneously then time in which $\frac{3}{4}$ th of the material decays is ....... years
Half-life of a radioactive substance is $20$ minutes. Difference between points of time when it is $33\%$ disintegrated and $67\%$ disintegrated is approximately ........... $min$
Two radioactive nuclei $P$ and $Q$ in a given sample decay into a stable nucleus $R$. At time $t = 0$, number of $P$ species are $4\, N_0$ and that of $Q$ are $N_0$. Half-life of $P$ (for conversion to $R$) is $1$ minute where as that of $Q$ is $2$ minutes. Initially there are no nuclei of $R$ present in the sample. When number of nuclei of $P$ and $Q$ are equal, the number of nuclei of $R$ present in the sample would be
Match List $I$ (Wavelength range of electromagnetic spectrum) with List $II$ (Method of production of these waves) and select the correct option from the options given below the lists
List $I$ | List $II$ |
$(1)$ $700\, nm$ to $1\,mm$ | $(i)$ Vibration of atoms and molecules |
$(2)$ $1\,nm$ to $400\, nm$ | $(ii)$ Inner shell electrons in atoms moving from one energy level to a lower level |
$(3)$ $ < 10^{-3}\,nm$ | $(iii)$ Radioactive decay of the nucleus |
$(4)$ $1\,mm$ to $0.1\,m$ | $(iv)$ Magnetron valve |
In a radioactive disintegration, the ratio of initial number of atoms to the number of atoms present at an instant of time equal to its mean life is