The total number of functions,$f:\{1,2,3,4\} \cdot\{1,2,3,4,5,6\}$   such that $f (1)+ f (2)= f (3)$, is equal to .

  • [JEE MAIN 2022]
  • A

    $60$

  • B

    $90$

  • C

    $108$

  • D

    $126$

Similar Questions

If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $

Let $[x]$ denote the greatest integer $\leq x$, where $x \in R$. If the domain of the real valued function $\mathrm{f}(\mathrm{x})=\sqrt{\frac{[\mathrm{x}] \mid-2}{\sqrt{[\mathrm{x}] \mid-3}}}$ is $(-\infty, \mathrm{a}) \cup[\mathrm{b}, \mathrm{c}) \cup[4, \infty), \mathrm{a}\,<\,\mathrm{b}\,<\,\mathrm{c}$, then the value of $\mathrm{a}+\mathrm{b}+\mathrm{c}$ is:

  • [JEE MAIN 2021]

Let $f:(1,3) \rightarrow \mathrm{R}$ be a function defined by

$f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ where $[\mathrm{x}]$ denotes the greatest

integer $\leq \mathrm{x} .$ Then the range of $f$ is

  • [JEE MAIN 2020]

The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$  is

Which of the following is true