Let $A=\{1,2,3,4,5\}$ and $B=\{1,2,3,4,5,6\}$. Then the number of functions $f: A \rightarrow B$ satisfying $f(1)+f(2)=f(4)-1$ is equal to

  • [JEE MAIN 2023]
  • A

    $360$

  • B

    $361$

  • C

    $362$

  • D

    $363$

Similar Questions

For $x\,\, \in \,R\,,x\, \ne \,0,$ let ${f_0}(x) = \frac{1}{{1 - x}}$ and ${f_{n + 1}}(x) = {f_0}({f_n}(x)),$ $n\, = 0,1,2,....$  Then the value of ${f_{100}}(3) + {f_1}\left( {\frac{2}{3}} \right) + {f_2}\left( {\frac{3}{2}} \right)$ is equal to

  • [JEE MAIN 2016]

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as

$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:

  • [JEE MAIN 2021]

If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, x \in R$, then $\sum_{k=1}^{81} f\left(\frac{k}{82}\right)$ is equal to :

  • [JEE MAIN 2025]

Let ${a_2},{a_3} \in R$ such that $\left| {{a_2} - {a_3}} \right| = 6$ and $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ Then the greatest value of $f(x)$ is

Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is