फलन $f(x) = \frac{{{x^2}}}{{{x^2} + 1}}$ का परिसर है
$(-1, 0)$
$(-1, 1)$
$[0, 1)$
$(1, 1)$
फलन $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ का डोमेन (प्रान्त) है
दिया गया फलन है $f(x) = \frac{{{a^x} + {a^{ - x}}}}{2},$ $(a > 2)$ तब $f(x + y) + f(x - y) = $
माना $f : R \rightarrow R$,$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1$ द्वारा परिभाषित है। तो $\sum_{ k =1}^{20} \frac{1}{\sin ( k ) \sin ( k + f ( k ))}$ बराबर है
यदि शून्येतर वास्तविक संख्याएँ $b$ तथा $c$ ऐसी हैं कि $\min f(x)>\max g(x)$, जहाँ $f(x)=x^{2}+2 b x+2 c ^{2}$ तथा $g (x)=-x^{2}-2 c x+ b ^{2}(x \in R )$ हैं, तो $\left|\frac{ c }{ b }\right|$ जिस अंतराल में है, वह है
माना $f:(1,3) \rightarrow R$ एक फलन है, जो $f( x )=\frac{ X [ X ]}{1+ x ^{2}}$, द्वारा परिभाषित है जहाँ $[ x ]$ महत्तम पूर्णाक $\leq x$ को दर्शाता है। तो $f$ का परिसर है