The domain of the derivative of the function $f(x) = \left\{ \begin{array}{l}{\tan ^{ - 1}}x\;\;\;\;\;,\;|x|\; \le 1\\\frac{1}{2}(|x|\; - 1)\;,\;|x|\; > 1\end{array} \right.$ is

  • [IIT 2002]
  • A

    $R - \{ 0\} $

  • B

    $R - \{ 1\} $

  • C

    $R - \{ - 1\} $

  • D

    $R - \{ - 1,\;1\} $

Similar Questions

Which one of the following best represent the graph of $y = \frac{|x-x^2|}{x^2-x}$ ? 

Let, $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ and $A=\{x \in R: f(x)=1\} .$ Then, $A$ has

  • [KVPY 2019]

If $y = 3[x] + 1 = 4[x -1] -10$, then $[x + 2y]$ is equal to (where $[.]$ is $G.I.F.$)

If $f(x) = \sin \log x$, then the value of $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ is equal to

Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is