Read the following two statements below carefully and state, with reasons, if it is true or false.

$(a)$ The Young’s modulus of rubber is greater than that of steel;

$(b)$ The stretching of a coil is determined by its shear modulus.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

(a) False

(b) True

For a given stress, the strain in rubber is more than it is in steel.

Young's modulus, $Y=\frac{\text { Stress }}{\text { Strain }}$

For a constant stress: $Y \propto \frac{1}{\text { strain }}$

Hence, Young's modulus for rubber is less than it is for steel.

Shear modulus is the ratio of the applied stress to the change in the shape of a body. The stretching of a coil changes its shape. Hence, shear modulus of elasticity is involved in this process.

Similar Questions

As shown in the figure, in an experiment to determine Young's modulus of a wire, the extension-load curve is plotted. The curve is a straight line passing through the origin and makes an angle of $45^{\circ}$ with the load axis. The length of wire is $62.8\,cm$ and its diameter is $4\,mm$. The Young's modulus is found to be $x \times$ $10^4\,Nm ^{-2}$. The value of $x$ is

  • [JEE MAIN 2023]

An equilateral triangle $ABC$ is formed by two copper rods $AB$ and $BC$ and one is aluminium rod which heated in such a way that temperature of each rod increases by $\Delta T$. Find change in the angle $\angle {ABC}$. (Coefficient of linear expansion for copper is $\alpha _1$ and for aluminium is $\alpha _2$).

A wire of length $L$ and radius $r$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $F$, its length increases by $5\,cm$. Another wire of the same material of length $4 L$ and radius $4\,r$ is pulled by a force $4\,F$ under same conditions. The increase in length of this wire is $....cm$.

  • [JEE MAIN 2022]

The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress ?

A structural steel rod has a radius of $10 \;mm$ and a length of $1.0 \;m$. A $100 \;kN$ force stretches it along its length. Calculate $(a)$ stress, $(b)$ elongation, and $(c)$ strain on the rod. Young's modulus, of structural steel $1 s 2.0 \times 10^{11} \;N m ^{-2}$