Read the following two statements below carefully and state, with reasons, if it is true or false.

$(a)$ The Young’s modulus of rubber is greater than that of steel;

$(b)$ The stretching of a coil is determined by its shear modulus.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

(a) False

(b) True

For a given stress, the strain in rubber is more than it is in steel.

Young's modulus, $Y=\frac{\text { Stress }}{\text { Strain }}$

For a constant stress: $Y \propto \frac{1}{\text { strain }}$

Hence, Young's modulus for rubber is less than it is for steel.

Shear modulus is the ratio of the applied stress to the change in the shape of a body. The stretching of a coil changes its shape. Hence, shear modulus of elasticity is involved in this process.

Similar Questions

To determine Young's modulus of a wire, the formula is $Y = \frac{F}{A}.\frac{L}{{\Delta L}}$ where $F/A$ is the stress and $L/\Delta L$ is the strain. The conversion factor to change $Y$ from $CGS$ to $MKS$ system is

Give the relation between shear modulus and Young’s modulus.

Each of three blocks $P$, $Q$ and $R$ shown in figure has a mass of $3 \mathrm{~kg}$. Each of the wire $A$ and $B$ has cross-sectional area $0.005 \mathrm{~cm}^2$ and Young's modulus $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Neglecting friction, the longitudinal strain on wire $B$ is____________ $\times 10^{-4}$. $\left(\right.$ Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$ )

  • [JEE MAIN 2024]

The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied ?

A force $F$ is applied on the wire of radius $r$ and length $L$ and change in the length of wire is $l.$ If the same force $F$ is applied on the wire of the same material and radius $2r$ and length $2L,$ Then the change in length of the other wire is