किसी तार का प्रतिरोध उसमें प्रवाहित धारा तथा छोड़ों के बीच विभवान्तर का मापन कर प्राप्त किया जा सकता है। यदि धारा तथा विभवान्तर के मापन में प्रत्येक $3\, \%$ की त्रुटि प्राप्त होती है, तो तार के प्रतिरोघ के मान में प्रतिशत त्रुटि ($\%$ में) ज्ञात कीजिये।

  • [AIEEE 2012]
  • A

    $3$

  • B

    $6$

  • C

    $0$

  • D

    $1$

Similar Questions

एक शंकु की विमायें अल्पत्मांक $2 \ mm$ के एक पैमाने से मापे जाने पर उसके आधार का व्यास तथा ऊँचाई, दोनों, $20.0 \ cm$ पाये जाते हैं। इस शंकु का आयतन ज्ञात करने में अधिकतम प्रतिशत त्रुटि का मान .......... होगा|

  • [IIT 2024]

यदि सभी स्वतंत्र राशियों (independent quantities) की मापन न्रुटियाँ (measurement errors) ज्ञात हो, तो किसी निर्भर राशि (dependent quantity) की न्रुटि का परिकलन (calculation) किया जा सकता है। इस परिकलन में श्रेणी प्रसार (series expansion) का प्रयोग किया जाता है और इस प्रसार को न्रुटि (error) के पहले घात (first power) पर रून्डित (truncate) किया जाता है। उदाहरण स्वरूप, सम्बन्ध $z=x / y$ में यदि $x, y$ और $z$ की त्रुटियाँ क्रमशः $\Delta x, \Delta y$ और $\Delta z$ हों, तो

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

$\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$ का श्रेणी प्रसार, $\Delta y / y$ में पहले घात तक, $1 \mp(\Delta y / y)$ है। स्वतंत्र राशियों की आपेक्षिक त्रुटियाँ (relative errors) सदैव जोड़ी जाती हैं। इसलिए $z$ की त्रुटि होगी

$\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) .$

उपरोक्त परिकलन में $\Delta x / x \ll 1, \Delta y / y \ll 1$ माने गये हैं। इसलिए इन राशियों की उच्चतर घातें (higher powers) उपेक्षित हैं।

($1$) एक विमा-रहित (dimensionless) राशि $a$ को माप कर, एक अनुपात (ratio) $r=\frac{(1-a)}{(1+a)}$ का परिकलन करना है। यदि $a$ की मापन की त्रुटि $\Delta a$ है ( $\Delta a / a \ll 1)$, तो $r$ के परिकलन की त्रुटि $\Delta r$ क्या होगी?

$(A)$ $\frac{\Delta a }{(1+ a )^2}$  $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$  $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$  $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$

($2$) एक प्रयोग के आरंभ में रेडियोएक्टिव नाभिकों की संख्या $3000$ है। प्रयोग के पहले $1.0$ सेकंड में $1000 \pm 40$ नाभिकों का क्षय हो जाता है। यदि $|x| \ll 1$ हो, तो $x$ के पहले घात तक $\ln (1+x)=x$ है। क्षयांक (decay constant) $\lambda$ के निर्धारण में त्रुटि $\Delta \lambda, s^{-1}$ में, हैtion of the decay constant $\lambda$, in $s ^{-1}$, is

$(A) 0.04$  $(B) 0.03$  $(C) 0.02$  $(D) 0.01$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

  • [IIT 2018]

$z = a ^2 x ^3 y ^{\frac{1}{2}}$ के लिए, जहाँ $a$ एक नियतांक है। यदि $x$ तथा $y$ के मापन में प्रतिशत न्रुटि क्रमश: $4 \%$ तथा $12 \%$ है, तो $z$ की प्रतिशत त्रुटि होगी $...........\%$

  • [JEE MAIN 2022]

मापन की शुद्धता निर्धारित होती है

ऊष्मा के जूल नियम के अनुसार उत्पन्न ऊष्मा $H = {I^2}\,Rt$ जहाँ $I$ धारा, $R$ प्रतिरोध तथा $t$ समय है। यदि $I, R$ तथा $t$ के मापन में त्रुटियाँ क्रमश: $3\%, 4\%$ तथा $6\%$ हैं तो $H$ के मापन में त्रुटि है