सारणिक $\left| {\,\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}\,} \right|$ का मान है
$20$
$10$
$0$
$250$
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
$\alpha $ के किस मान के लिए समीकरण निकाय ${(\alpha + 1)^3}x + {(\alpha + 2)^3}y - {(\alpha + 3)^3} = 0$, $(\alpha + 1)x + (\alpha + 2)y - (\alpha + 3) = 0,$ $x + y - 1 = 0$ संगत है
यदि $\left|\begin{array}{cc}x & 2 \\ 18 & x\end{array}\right|=\left|\begin{array}{cc}6 & 2 \\ 18 & 6\end{array}\right|$ हो तो $x$ बराबर है
माना रैखिक समीकरण निकाय $4 x +\lambda y +2 z =0$ ; $2 x - y + z =0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ का एक अतुच्छ हल है। तो निम्न में से कौन सा सत्य है ?
सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,का गुणनखण्ड होगा